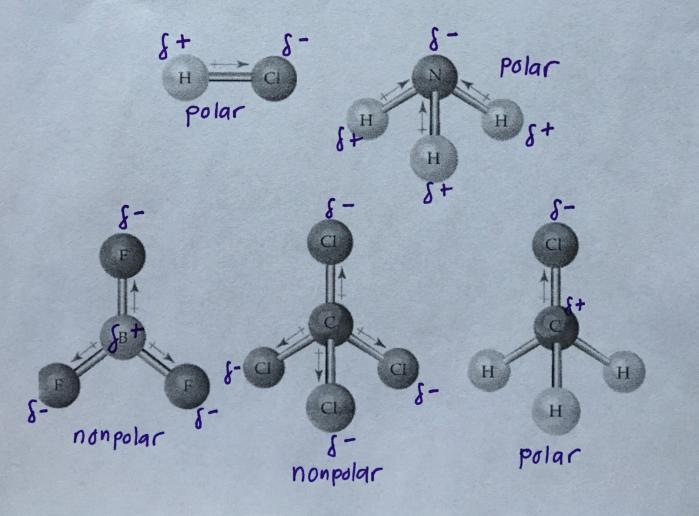

Molecular Shapes

Valence Shell Electron Pair Repulsion Theory (VSPER)

# of Total e ⁻ Regions	# Shared e ⁻ Regions	# Lone e ⁻ Pairs	Shape Name	Picture Bonding e regions	Examples
2	2	0	Linear	0-0-0	CO ₂ , Cl ₂ , SiO ₂
3	3	0	Trigonal Planar		BF ₃ , CH ₂ O
4	4	0	Tetrahedral	000	CH ₄ , CBr ₄
4	3	1	Trigonal Pyramidal	Oc-Lone e- Pair	NH ₃ , PCl ₃
4	2	2	Bent	0000	SCI ₂ , H ₂ O

Molecular Polarity and Intermolecular Forces


Molecular Geometry: Name each molecular shape. (linear, trigonal planar, tetrahedral, bent, pyramidal)

Molecular Polarity: Determine if each molecule is polar or nonpolar.

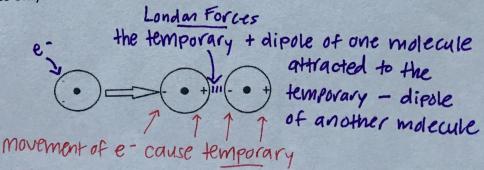
Nonpolar Molecule: equal distribution of electrical charge throughout the molecule. The charge distribution is symmetric around the central atom.

Polar Molecule: unequal distribution of electrical charge throughout the molecule. The charge distribution is asymmetric around the central atom.

Intermolecular Forces (IMF): attractions between molecules (NOT the covalent bonds in the molecule!)

Stronger the attraction between molecules = harder to separate molecules from one another = More energy to separate molecules = higher melting and boiling point

3 Types of IMF's


1. Hydrogen bonding: strongest IMF; attraction between H in one molecule and N,O, or F in a different molecule

* N, O, and F are the most electronegative elements .. N, 0, and F have very negative & -, making attraction to & t very

2. <u>Dipole-dipole</u>: attraction between polar molecules

dipole, dipole attraction = 5 dipole 8+ 8- 0f one molecule H-CE---H-CI attracted to 8+ dipole of another molecule Polar molecules have permanent dipoles

3. London forces: weakest IMF; present between all molecules *nonpolar molecules only have London forces

positive and negative dipoles to form

USA	e Lewis and e regions ground center atom	calculate DE	1 11	molecule shape 8+8-
ructure	Draw and Name Molecule Shape (geometry)	Bond Polar Polar	Molecular Polarity	IMFR depends on molecular polarity
:F: ::	Tetra- 1	F: 4	8-charges equally	London

			I deli / b		
Formula	Lewis Structure	Draw and Name Molecule	Bond - Polar	Molecular	IMFR depends o
		Shape (geometry)	Polarity bond	Polarity	molecular pulari.
CF ₄	:F: -C - F: :F: :F: :F: :F: :F: :F: :F: :F: :F	Tetra- 1 hedral C+ F-F- F-	F: 4 C: 2.5 DEn = 1.5 Polar bond	8-charges equally surround c atom :.Nonpolar Molecule	London
NF ₃	: F - N - F:	Trigonal Pyra- N midal F F 5- F 5-	N: 3	8- Charges only below Natom ∴unequal distribution ∴Polar Molecula	London and Dipole- dipole
BCl ₃	: ċi-B-ċi:	Sc1 C18- Trigonal 8B Planar I	CI: 3 B: 2 AEn = 1 polar bond	equal distribution of charge around B atom Nonpolar Molecule	London
CH₃F	: F: I H-C-H H	S+H H HS+ Tetrahedral	F: 4 C: 2.5 AEn = 1.5 Polar bond C: 2.5 H: 2.1 AEn = 0.4 Polar bond	unequal distribution of charge arand catom (end w/F much more negative) : polar molecule	London and DiPole dipole *Not H-bond b/c His not bonded to N, o, or F

Solubility - in order for a solute to dissolve in a solvent, the solute must be attracted to the solvent (in other words, solute and solvent must have similar types of intermolecular forces)

1. Determine the polarity of water.

DEn = 3.5 - 2.1 = 1.4 = polar band so add 8+/8-

H-O-H

H20 is a polar molecule ble the oxygen end is \$ and H end is \$ + .: unequal distribution of charge

2. Which of molecules from the table above will dissolve in water?

Since H20 is a polar molecule w/ f+ and f- ends, H20 attracts molecules that also have f+ and f- ends (i.e. other polar molecules). .. NF3 and CHaF dissolve in H20.

^{*}Polar solvents dissolve polar and ionic solutes.

^{*}Nonpolar solvents dissolve nonpolar solutes.