Titration

Method used to determine the concentration of a solution.

There are two solutions used in a titration.

Solution	Location	Is its Concentration Known Before Titration Begins?	Is its Volume Known Before Titration Begins?
Analyte	Flask	No! This is what we are ultimately solving for.	Yes! We must know the exact volume of analyte placed into the flask.
			No! This quantity will be measured by doing the experiment. Add titrant to the flask until the rxn reaches the equivalence point. Record volume of titrant used.
Titrant	Buret	Yes! If we didn't know this, then the titration would be pointless.	

Equivalence point: stoichiometrically equal moles
of analyte and titrant (i.e. moles of acid = moles of base)

End point: when indicator changes color, signifies the end of titration. We want to use an indicator that will change color close to the equivalence point.

Indicators: use an indicator that will change color in the pH range of the equivalence point.

- Choose an indictor whose $\mathrm{pKa}=\mathrm{pH}$ of the solution at equivalence point
- Example: if $\mathrm{pH}=4$ at equivalence point, choose an indicator with a $\mathrm{pKa}=4$ (i.e. $\mathrm{Ka}=1 \times 10^{-4}$)

3 Types of Acid Base Reactions:

Rxn Type	Strong Acid + Strong Base	Weak Acid + Strong Base	Strong Acid + Weak Base
Net lonic Equation	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$	$\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}$	$\mathrm{H}^{+}+\mathrm{B} \rightarrow \mathrm{BH}^{+}$
Products	Water + Neutral Salt	Water + Basic Salt	Water + Acidic Salt
pH at Equivalence Point	$\mathrm{pH}=7$	$\mathrm{pH}>7$	$\mathrm{pH}<7$
Example	$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$	$\mathrm{HF}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaF}$	$\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
	Cross out any ions part of a strong acid or strong base (because they are spectators). You got your net ionic equation! ©)		

Titration curve: plot of pH (y -axis) vs. volume of titrant added (x-axis)

Example 1

NaOH titrant
1.0 M
HCl analyte
$30 . \mathrm{mL}$

Rxn type	
Net ionic equation	
pH at equivalence point	
Volume of titrant needed to reach equivalence point	
Calculate concentration of analyte	

Example 2

$30 . \mathrm{mL}$

Rxn type	
Net ionic equation	
pH at equivalence point	
Volume of titrant needed to reach equivalence point	
Calculate concentration of analyte	

Volume of Titrant Added

What type of reaction is represented by the titration curve to the left?

Strong Acid + Strong Base Titration

		What's in the flask?	How to calculate pH
1.	Before titration begins	Analyte only	Initial $[$ analyte $]=\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$ $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$ $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$ $\mathrm{pH}+\mathrm{pOH}=14$
2.	Before equivalence point	Fewer moles of analyte	$\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]=\left(\frac{\text { mols analyte remaing }}{\text { total volume }}\right)$
3.	Half-way to equivalence point	Half the moles of original analyte	$\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]=\left(\frac{\text { mols analyte remaing }}{\text { total volume }}\right)$
4.	Equivalence point	Water and salt Zero moles of analyte	Neutral salt $\mathrm{pH}=7$
5.	Beyond equivalence point	Excess titrant	$\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]=\left(\frac{\text { mols titrant in excess }}{\text { total volume }}\right)$

Weak Acid/Base + Strong Base/Acid Titration

		What's in the flask?	How to calculate pH
1.	Before titration begins	Analyte only	Weak acid = Ka ICE chart Weak base = Kb ICE chart
2.	Before equivalence point	Buffer	$\left[\mathrm{H}^{+}\right]=\mathrm{Ka}\left(\frac{\text { mols weak acid }}{\text { mols conjugate base }}\right)$
3.	Half-way to equivalence point	Buffer with 1:1 mole ratio of weak acid to conjugate base	$\mathrm{pH}=\mathrm{pKa}$ of weak acid
4.	Equivalence point	Water and salt (i.e. only conjugate acid/base of the analyte)	$\begin{aligned} & \text { Acidic salt = Ka ICE chart, } \mathrm{pH}<7 \\ & \text { Basic salt = Kb ICE chart, } \mathrm{pH}>7 \end{aligned}$
5.	Beyond equivalence point	Excess titrant	$\left[\mathrm{H}^{+}\right] \text {or }\left[\mathrm{OH}^{-}\right]=\left(\frac{\text { mols titrant in excess }}{\text { total volume }}\right)$

