<u>Titration</u>

Method used to determine the concentration of a solution.

There are two solutions used in a titration.

		Is its Concentration Known Before	Is its Volume Known Before Titration
Solution	Location	Titration Begins?	Begins?
		No! This is what we are ultimately	Yes! We must know the exact volume
Analyte	Flask	solving for.	of analyte placed into the flask.
			No! This quantity will be measured by
			doing the experiment. Add titrant to
			the flask until the rxn reaches the
		Yes! If we didn't know this, then	equivalence point. Record volume of
Titrant	Buret	the titration would be pointless.	titrant used.

Equivalence point: stoichiometrically equal moles of analyte and titrant (i.e. moles of acid = moles of base)

<u>End point</u>: when indicator **changes color**, signifies the end of titration. We want to use an indicator that will change color close to the equivalence point.

<u>Indicators</u>: use an indicator that will change color in the pH range of the equivalence point.

- Choose an indictor whose pKa = pH of the solution at equivalence point
- Example: if pH = 4 at equivalence point, choose an indicator with a pKa = 4 (i.e. Ka = 1 x 10⁻⁴)

3 Types of Acid Base Reactions:

Rxn Type	Strong Acid + Strong Base	Weak Acid + Strong Base	Strong Acid + Weak Base
Net Ionic	$H^+ + OH^- \rightarrow H_2O$	$HA + OH^{-} \rightarrow H_2O + A^{-}$	$H^+ + B \rightarrow BH^+$
Equation			
Products	Water + Neutral Salt	Water + Basic Salt	Water + Acidic Salt
pH at	pH = 7	pH > 7	pH < 7
Equivalence			
Point			
Example	HCl + NaOH → H₂O + NaCl	$HF + NaOH \rightarrow H_2O + NaF$	$HCI + NH_3 \rightarrow NH_4CI$
	Cross out any ions part of a strong acid or strong base (because they are spectators).		
	You got your net ionic equation! 🐵		

<u>Titration curve</u>: plot of pH (y-axis) vs. volume of titrant added (x-axis)

-	
pH at equivalence point	
Volume of titrant needed to reach equivalence point	
Calculate concentration of analyte	

Rxn type	
Net ionic equation	
pH at equivalence point	
Volume of titrant needed to reach equivalence point	
Calculate concentration of analyte	

How do you use a titration curve to determine the equivalence point?

Why is the pH at the equivalence point different for the two examples above?

Strong Acid + Strong Base Titration

		What's in the flask?	How to calculate pH
1.	Before titration begins	Analyte only	Initial [analyte] = [H ⁺] or [OH ⁻] pH = – log[H ⁺] pOH = – log [OH ⁻] pH + pOH = 14
2.	Before equivalence point	Fewer moles of analyte	$[H^+] \text{ or } [OH^-] = \left(\frac{mols \ analyte \ remaing}{total \ volume}\right)$
3.	Half-way to equivalence point	Half the moles of original analyte	$[H^+] \text{ or } [OH^-] = \left(\frac{mols \ analyte \ remaing}{total \ volume}\right)$
4.	Equivalence point	Water and salt Zero moles of analyte	Neutral salt pH = 7
5.	Beyond equivalence point	Excess titrant	$[H^+] \text{ or } [OH^-] = \left(\frac{mols \ titrant \ in \ excess}{total \ volume}\right)$

Weak Acid/Base + Strong Base/Acid Titration

		What's in the flask?	How to calculate pH
1.	Before	Analyte only	Weak acid = Ka ICE chart
	titration		Weak base = Kb ICE chart
	begins		
2.	Before	Buffer	$[H^+] = Ka\left(\frac{mols\ weak\ acid}{mols\ conjugate\ base}\right)$
	equivalence		(mols conjugate base)
	point		
3.	Half-way to	Buffer with 1:1 mole ratio of weak	pH = pKa of weak acid
	equivalence	acid to conjugate base	
	point		
4.	Equivalence	Water and salt (i.e. only conjugate	Acidic salt = Ka ICE chart, pH < 7
	point	acid/base of the analyte)	Basic salt = Kb ICE chart, pH > 7
5.	Beyond	Excess titrant	$[H^+] \text{ or } [OH^-] = \left(\frac{mols \ titrant \ in \ excess}{total \ volume}\right)$
	equivalence		total volume)
	point		