Acid Base Equilibrium Study Guide - Multiple Choice

1. The pH of 0.1 molar sodium hydroxide is

a. 1
$$[OH^{-}] = 0.1 M = 1 \times 10^{-1}$$
 c. 11 $PH = 14 - 1 = 13$
b. 4 $POH = -log(1 \times 10^{-1}) = 1$ d. 13

2. In titrating 0.20 M hydrochloric acid, HCl, with 0.20 M NaOH at 25°C, the solution at the equivalence point is

	at the equivalence point is	HCI + NaOH -> HzO + NaCl
B	a. 0.20 M NaCl	mols HCI = mols NacH = mals Nacl
	(b.) 0.10 M NaCl	Equal Valuage of the
	Jigitty acture PH - /	they have same undarity. Thus the total volume
	d 0.10 M HCl and 0.20 I	M NaOH IS double the volume of Hol used.
		:. [Nach = x me] - x mel .

3. Consider the following indicators and their pH ranges: $= \frac{2M}{2} = \frac{2M$

Methyl orange	3.2-4.4	
Methyl red	4.8-6.0) Acidic PH	· at equivalence
Bromothymol blue	6.0-7.6	Point
Phenolphthalein	8.2-10.0	
Alizarin yellow	10.1-12.0	

Assume an indicator works best when the equivalence point of a titration comes in the middle of the indicator range. For which of the following titrations would methyl red be the best indicator?

a.
$$0.100 \text{ M HNO}_3 + 0.100 \text{ M KOH } \text{ pH} = 7$$

b. $0.100 \text{ M amiline} (\text{Kb} = 3.8 \times 10^{-10}) + 0.100 \text{ M HCI } \text{ pH} <<7$ weaker base than NH₃ (C) $0.100 \text{ M NH}_3 (\text{Kb} = 1.8 \times 10^{-5}) + 0.100 \text{ M HCI } \text{ pH} < 7$ more acidic <<7 d $0.100 \text{ M HF} (\text{Ka} = 7.2 \times 10^{-4}) + 0.100 \text{ M NaOH } \text{ pH} > 7$

- 4. A 0.20-molar solution of a weak monoprotic acid, HA, has a pH of 3.00. The ionization constant of this acid is
- PH=3 : [H+] = 10-3 M = X a. 5.0×10^{-7} $Ka = \frac{X^2}{(HA)_{1mhal}} = \frac{(10^{-3})^2}{0.2} = \frac{10^{-6}}{0.2}$ b. 2.0×10^{-7} (c) 5.0×10^{-6} d. 2.0 x 10⁻³ $= \frac{1}{.2} \times 10^{-6}$ $= 5 \times 10^{-6}$

- `a. The [H⁺] at the equivalence point equals the ionization constant of the acid.
- b. The pH at the equivalence point depends on the indicator used.
- $(\widehat{c.})$ The graph of the pH versus volume of base added rises gradually at first then much more rapidly.
- d. The graph of pH versus volume of base added shows no sharp rise.
- 6.) Equal volumes of 0.10-molar H₃PO₄ and 0.20-molar KOH are mixed. After equilibrium is established, the type of ion in solution in the largest concentration, other than K⁺ ion is, H3POy = H++ H2POy-

a.
$$H_2PO_4^-$$

d. OH-

HPOYZ- = (H+) + POY3-Excess OH- reacts w/ H+ causing reverse shift & more HPOY

7. The pH of a solution prepared by the addition of 10. mL of 0.002 M KOH(aq) to Mado 10. mL of distilled water is closest to

8. Which of the following mixtures would make a buffer?

wear and = ICE =>X=[H]

9. What is the H^+ concentration in 0.05 M HCN? (Ka for HCN is 5.0×10^{-10}) a. 2.5 x 10⁻¹⁰ b. 5.0×10^{-10} (c.) 5.0 x 10⁻⁶ 10. A 1-molar solution of which of the following salts has the highest pH? a. Na₂SO₄ MOST BOSIC b. Na2co3 lons of strong = neutral c. NHACT wear positive Ions = acidic
d. NaHSO4 regative ions = basic $HC_2H_3O_2(aq) + CN^-(aq) \leftrightarrow HCN(aq) + C_2H_3O_2^-(aq)$ 11. The reaction represented above has an equilibrium constant equal to 3.7 x 10⁻⁴. Which of the following can be concluded from this information? a. $CN^{-}(aq)$ is a stronger base than $C_2H_3O_2^{-}(aq)$. Yeg 21 b) HCN(aq) is a stronger acid than HC2H3O2(aq). Reactant favored Peactant The conjugate base of CN (aq) is C2H3O2 (aq). more likely, than HC2H3O2 to denote Ht d. The pH of a solution containing equimolar amounts of CN (aq) and $HC_2H_3O_2(aq)$ is 7.0. $+Ca++ H_2O(I) + H_2O(I) \leftrightarrow H_3O^+(aq) + OH^-(aq)$ 12. The autoionization of water, as represented by the equation above, is known to be endothermic. Which of the following correctly describes what occurs as the temperature of water is raised = Shiff forward = more H30+ = lower a. [H₃O⁺] increases, causing pH to increase. (b.) [H₃O+] increases, causing pH to decrease. (H₃O⁺] decreases, causing pH to increase.

d [H₃O⁺] decreases, causing pH to decrease.

Chemical	Formula	Dissociation Constant
CH ₃ COOI	H acid	$K = 1.8 \times 10^{-5} = K_4$
NH ₃	base	$K = 1.8 \times 10^{-5} = 1.8 \times 10^{-5}$
H ₂ CO ₃	acid	$K_l = 4 \times 10^{-7} = K_q$
HCO ₃ -	acid	$K_2 = 4 \times 10^{-11} = \text{Kg}$

- 13.A buffer solution is prepared by mixing equal volumes of 0.50 M weak acid with
 - 1.0 M of its conjugate base. Based on the data given in the table above, which of the following should be used to prepare the buffer solution with a pH between 4 and 7?

B

- -8 CH3COOH and NH3 NOt 9 buffer
- b. CH3COOH and CH3COONA BUFFER K
- & H2CO3 and NH3 NOT a buffer
- d H2CO3 and Na2CO3 NUT a buffer

Questions 14-15: The graph to the right shows the titration curve that results when 100. mL of 0.0250 M acetic acid is titrated with 0.100 M NaOH.

14. Which of the following indicators is the best choice for this titration?

Indicator

pH Range of Color Change

7

- a. Methyl orange
- 3.2 4.4

b. Methyl red

- 4.8 6.0
- c. Bromothymol blue
- 6.1 7.6
- d) Phenolphthalein
- 8.2 10.0

15. What part of the curve corresponds to the optimum buffer action for the acidic/acetate ion pair?

Perfect buffer = Half Equiv. pt.

- (a.) Point V
- b. Point Z
- c. Along all of section WY
- d. Along all of section YZ