Relative Rates

Sunday, February 24, 2019

8:46 AM

4. For the reaction below, the initial rate of formation of NO(g) is 0.60 M s⁻¹.

$$2 \text{ NO}_2(g) \rightarrow 0_2(g) + 2 \text{ NO}(g)$$

a) Write the relative rates of change in concentrations of the reactants and products.

$$-\left(\frac{1}{2}\right)\frac{\Delta[No_2]}{\Delta t} = \left(\frac{1}{1}\right)\frac{\Delta[o_2]}{\Delta t} = +\left(\frac{1}{2}\right)\frac{\Delta[No]}{\Delta t}$$
Half
Half

b) What is the initial rate of formation of O₂(g)?

c) What is the initial rate of disappearance of NO₂(g)?

5. For the reaction below, the initial rate of consumption of $PH_3(g)$ is 1.33 x 10^{-3} M min⁻¹.

$$4 \text{ PH}_3(g) \rightarrow P_4(g) + 6 \text{ H}_2(g)$$

a) Calculate the initial rate of formation of $P_4(g)$.

b) Calculate the initial rate of formation of $H_2(g)$.

Ama has 1

win