Reaction Mechanisms

A mechanism represents the sequence of bond-making and bond-breaking steps that occur during the conversion of reactants to products.

- Must be determined by experiment
- Must agree with overall stoichiometry

 Sum Steps = ortifall Yxn
- The slowest step is the rate determining step
- Must agree with the experimentally determined rate law (determine the slowest step, add slowest step to all steps that occur before it)
- Reaction intermediate product in one step but consumed in another
- Catalyst goes in as a reactant, comes out as a product NOT CONSUMED

ELEMENTARY STEP	MOLECULARITY	RATE EXPRESSION
$A \rightarrow \text{products}$	unimolecular	rate = k[A]
$A + B \rightarrow \text{products}$	bimolecular 2	rate = k[A][B]'
$A + A \rightarrow products$	bimolecular 2	$rate = k[A]^2$
$2 A + B \rightarrow products*$	termolecular* 3	$rate = k[A]^2[B]^{\bullet}$

ZA

Stoichiometry (coefficients) may be used to predict rate expressions for elementary steps only, but not for overall reactions.

1. Nitrogen oxide is reduced by hydrogen to give water and nitrogen,

$$2 H_2(g) + 2 NO(g) \rightarrow N_2(g) + 2 H_2O(g)$$

and one possible mechanism to account for this reaction is

$$2 \text{ NO(g)} \rightarrow N_2 Q_2(g)$$
 bimolecular $N_2 Q_2(g) + H_2(g) \rightarrow N_2 Q(g) + H_2 Q(g)$ bimolecular $N_2 Q(g) + H_2(g) \rightarrow N_2(g) + H_2 Q(g)$ bimolecular

What is the molecularity for each step? Show that the sum of these elementary steps yields the overall reaction.

2NO(0) + 2Hz(0) ->2HzO(0) + Nz(5)

2. One mechanism for the destruction of ozone in the upper atmosphere is

$$O_3(g) + NO(g) \rightarrow NO_2(g) + O_2(g)$$

 $NO_2(g) + O(g) \rightarrow NO(g) + O_2(g)$

- a. What is the overall balanced equation for the reaction?
- b. Which species is a catalyst?
- c. Which species is an intermediate?
- a) 03(9) + 0(9) -> 202(9)
- b) catalyst 1st appears as a reactant,

 then later as a product

 No = catalyst
- c) Intermediate 1st appears as a product, then

 (NOz: Intermediate)
- 3. The balanced equation for the reaction of the gases of nitrogen dioxide and fluorine is

$$2 NO_2(g) + F_2(g) \rightarrow 2 NO_2F(g)$$

The experimentally determined rate law is Rate = $k [NO_2] [F_2]$

A suggested mechanism for the reaction is

A suggested mechanism for the reaction is rate = k[NOz] (Fz7') $F + NO_2 \rightarrow NO_2F$ Fast Is this an acceptable mechanism? Explain your reasoning. 2 NO2 + FZ -> 2 NOZF U sum of sters equal the overall criteria #2 **VX**n ate of slow step matches the overall rate law yes, both criteria are met.

4. Consider the reaction between nitrogen dioxide and carbon monoxide:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

The rate law for this reaction is known to be:

Rate =
$$k[NO_2]^2$$

The following mechanism is proposed.

Step 1:
$$NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$$

Step 2:
$$NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$$

Which step is the rate-determining step? Justify your answer.

Step 1 = Slow

Step 2 = Slow

Step 2: NO_3 (g) + CO (g) $\rightarrow NO_2$ (g) + CO_2 (g)

Fast Step 1: $NO_2(g) + NQ_2(g) \rightarrow NQ_3(g) + NO(g)$

Step 2:
$$NO_3$$
 (g) + CO (g) $\rightarrow NO_2$ (g) + CO₂ (g)

Step I is rate determining b/c step I's rate law matches the overall rate law of the rxn. NO2(9) + CO(5) -> NO(5) + CO2(9)