Oxidation - Reduction (aka Redox) Reactions

One or more electrons are transferred in a redox reaction

Examples: photosynthesis, oxidation of sugars, fats, and proteins, and combustion reactions

To keep track of the electrons transferred in a redox reaction, we assign oxidation states.

Oxidation State – arbitrary charge assigned to an atom

The Oxidation State of	Summary	Examples
An atom in an element is zero	Element: 0	Na(s), O ₂ (g), Hg(l)
A monatomic ion is the same as its charge	Monatomic ion: charge of ion	Na ⁺ , Cl ⁻
Fluorine is -1 in its compounds	Fluorine: -1	HF, PF₃
Oxygen is -2 in its compounds	Oxygen: -2	H ₂ O, CO ₂
*Exception: oxygen is -1 in peroxides (O ₂ ⁻²)	*Except in peroxides: O is -1	*Exception: H ₂ O ₂
Hydrogen is +1 in its covalent compounds	Hydrogen: +1	H ₂ O, HCl, NH ₃
Hydrogen is -1 in binary metal hydrides	Hydrogen: -1	NaH, MgH ₂

Neutral Compounds: sum of all oxidation states must equal zero

Examples: H_2O is neutral: each H is +1 and O is -2; SUM = 2(+1) + (-2) = 0

NaCl is neutral: Na is +1 and Cl is -1; SUM = (+1) + (-1) = 0

lonic species: sum of all oxidation states must equal charge of the ion

Examples: NO₃ has charge of -1; each O is -2 and SUM = -1

$$N + 3(-2) = -1$$

$$N = +5$$

 $Cr_2O_7^{-2}$ has charge of -2; each O is -2 and SUM = -2

$$2(Cr) + 7(-2) = -2$$

$$Cr = +6$$

3.
$$Na_2CO_3$$
 $(2)(+1) + C + (3)(-2) = 0$ $C = +4$

4.
$$\frac{15^{-2}}{\text{ClO}_3}$$
 $Cl + (3)(-2) = -1$

5.
$$KMnO_4$$
 (1)(+1) + $Mn + 4(-2) = 0$

$$Mn = + 7$$

7.
$$Fe_3O_4$$
 3Fe + 4(-2) = 0
3Fe = 8

8.
$$CH_3F$$
 $C + 3(+1) + (1)(-1) = 0$ $C = -2$

*LEO says GER

TO THE STATE OF TH

Oxidation - oxidation number increases, loss of electrons

Reduction - oxidation number decreases, gain of electrons