Oxidation – Reduction (aka Redox) Reactions

One or more electrons are transferred in a redox reaction

Examples: photosynthesis, oxidation of sugars, fats, and proteins, and combustion reactions

To keep track of the electrons transferred in a redox reaction, we assign oxidation states.

Oxidation State – arbitrary charge assigned to an atom

The Oxidation State of	Summary	Examples
An atom in an element is zero	Element: 0	Na(s), O ₂ (g), Hg(l)
A monatomic ion is the same	Monatomic ion: charge of ion	Na⁺, Cl⁻
as its charge		
Fluorine is -1 in its compounds	Fluorine: -1	HF, PF ₃
Oxygen is -2 in its compounds	Oxygen: -2	H ₂ O, CO ₂
*Exception: oxygen is -1 in	*Except in peroxides: O is -1	*Exception: H ₂ O ₂
peroxides (O ₂ -2)		
Hydrogen is +1 in its covalent	Hydrogen: +1	H ₂ O, HCl, NH ₃
compounds		
Hydrogen is -1 in binary metal	Hydrogen: -1	NaH, MgH ₂
hydrides		

Neutral Compounds: sum of all oxidation states must equal zero

Examples: H_2O is neutral: each H is +1 and O is -2; SUM = 2(+1) + (-2) = 0

NaCl is neutral: Na is +1 and Cl is -1; SUM = (+1) + (-1) = 0

Ionic species: sum of all oxidation states must equal charge of the ion

Examples: NO_3^- has charge of -1; each O is -2 and SUM = -1

$$N + 3(-2) = -1$$

$$N = +5$$

 $Cr_2O_7^{2-}$ has charge of -2; each O is -2 and SUM = -2

$$2(Cr) + 7(-2) = -2$$

$$Cr = +6$$

<u>Practice</u>: Assign oxidation states to each element.

1. CaBr₂

5. KMnO₄

9. P₄

 $2. N_2$

6. SF₆

10. Al_2O_3

3. Na₂CO₃

7. Fe_3O_4

11. LiH

4. ClO₃⁻

8. CH₃F

12. SO₄²⁻

*LEO says GER

<u>Oxidation</u> – oxidation number increases, loss of electrons

<u>Reduction</u> – oxidation number decreases, gain of electrons

Balancing Redox Equations

Balance the following REDOX reactions (cr = crystalline solid).

All reactions take place in an acidic solution unless otherwise indicated.

1. Cr (cr) + Sn
$$^{4+}$$
 (aq) \longrightarrow Cr $^{3+}$ (aq) + Sn $^{2+}$ (aq)

2. Al (cr) + H + (aq)
$$\longrightarrow$$
 Al ³⁺ (aq) + H₂ (g)

3.
$$MnO_4^-$$
 (aq) + S^{2-} (aq) \longrightarrow Mn^{2+} (aq) + S (cr)

4. Cu (cr) +
$$SO_4^{2-}$$
 (aq) \longrightarrow Cu $^{2+}$ (aq) + SO_2 (g)

5. Fe
$$^{2+}$$
 (aq) + MnO₄ $^{-}$ (aq) \longrightarrow Mn $^{2+}$ (aq) + Fe $^{3+}$ (aq)

6.
$$NO_3^-$$
 (aq) + 5 (cr) $\longrightarrow NO_2$ (g) + H_2SO_4 (aq)

7. Cu (cr) +
$$NO_3^-$$
 (aq) \longrightarrow Cu ²⁺ (aq) + NO (g)

8.
$$Zn(cr) + Ag^+(aq) \longrightarrow Zn^{2+}(aq) + Ag(cr)$$

9. CuS (cr) +
$$NO_3^-$$
 (aq) \longrightarrow Cu ²⁺ (aq) + NO_2 (g) + S (cr)

$$10.NO_2$$
 (g) + ClO - (aq) \longrightarrow NO_3 - (aq) + Cl - (aq) BASIC

11. Fe
$$^{2+}$$
 (aq) + Cr₂O₇ $^{2-}$ (aq) \longrightarrow Cr $^{3+}$ (aq) + Fe $^{3+}$ (aq)

12.
$$MnO_4$$
 (aq) + Cl (aq) \longrightarrow Mn^{2+} (aq) + Cl_2 (cr)

13.
$$IO_3^-(aq) + H_2S(g) \longrightarrow I_2(g) + SO_3^{2-}(aq)$$
 BASIC

14.
$$H_2SeO_3$$
 (aq) + Br^- (aq) \longrightarrow Se (cr) + Se (cr) + Br_2 (g)

15.
$$BrO_3$$
 - (aq) + MnO_2 (cr) \longrightarrow Br - (aq) + MnO_4 - (aq) **BASIC**

16.
$$H_2S(g) + NO_3 - (aq) \longrightarrow S(cr) + NO(g)$$

17.
$$Br_2(l) + SO_3^{2-}(aq) \longrightarrow Br^{-}(aq) + SO_4^{2-}(aq)$$
 BASIC

Solution Stoichiometry w/ REDOX

(use the balanced equations you determined from the front)

- 1. What mass of chromium solid is needed to react completely with 20.0 mL of a 1.00 M tin (IV) nitrate solution?
- 2. What mass of aluminum solid is needed to react completely with 40.0 mL of a 1.00 M hydrochloric acid solution?
- 3. What volume of a 1.00 M potassium permanganate solution is needed to react completely with 30.0 mL of a 2.00 M sodium sulfide solution?
- 4. What volume of a 0.100 M potassium sulfate solution is needed to react completely 10.0 g of copper solid?
- 5. What volume of a 0.300 M iron (II) nitrate is needed to react completely with 50.0 mL of a 0.200 M potassium permanganate solution?
- 6. What volume of a 0.300 M potassium nitrate solution is needed to react completely 20.0 g of sulfur solid?
- 7. What is the molarity if 50.0 mL of sodium nitrate solution is needed to react completely with 15.0 g of copper solid?
- 8. What mass of zinc solid is needed to react completely with 30.0 mL of 0.400 M silver nitrate solution?
- 9. What mass of copper (II) sulfide solid is needed to react completely with 10.0 mL of a 0.800 M potassium nitrate solution?
- 10. What volume of a 1.000 M sodium hypochlorite is needed to react completely with 30.00 grams of nitrogen dioxide gas?
- 11. What is the molarity if 20.0 mL of iron (II) nitrate is needed to react completely with 50.0 mL of a 0.200 M potassium dichromate solution?
- 12. What is the molarity if 15.0 mL of potassium dichromate solution is needed to react completely with 30.0 mL of a 1.00 M sodium chloride solution?
- 13. What volume of a 0.500 M sodium iodate is needed to react completely with 12.00 grams of hydrogen sulfide gas?