

$$Pb(NO_3)_2(s) + 2 NaI(aq) \rightarrow PbI_2(s) + 2 NaNO_3(aq)$$

(a) List an appropriate observation that provides evidence of a chemical reaction between the two compounds.

A precipitate forms with an appearance that is different from that of the dissolving solid.

One point is earned for stating that a precipitate is formed.

(b) Calculate the number of moles of each reactant.

mol Pb(NO₃)₂ = $0.150 \text{ g Pb(NO}_3)_2 \times \frac{1 \text{ mol Pb(NO}_3)_2}{331 \text{ g Pb(NO}_3)_2}$ = $4.53 \times 10^{-4} \text{ mol}$ mol NaI = $0.100 M \times 0.125 L = 1.25 \times 10^{-2} \text{ mol}$

One point is earned for the correct number of moles of $Pb(NO_3)_2$.

One point is earned for the correct number of moles of NaI.

Molarity = mol 0.100M = mol Nat 125L

 $41539 = 4.153 \times 10^{3}$ 4.2×10^{3} 42009

grams

mol grams

·1252 .100 mol

.250 mol | L NaI .100 mol (c) Identify the limiting reactant. Show calculations to support your identification.

mol NaI reacting =
$$4.53 \times 10^{-4}$$
 mol Pb(NO₃)₂ × $\frac{2 \text{ mol NaI}}{1 \text{ mol Pb(NO}_3)_2}$

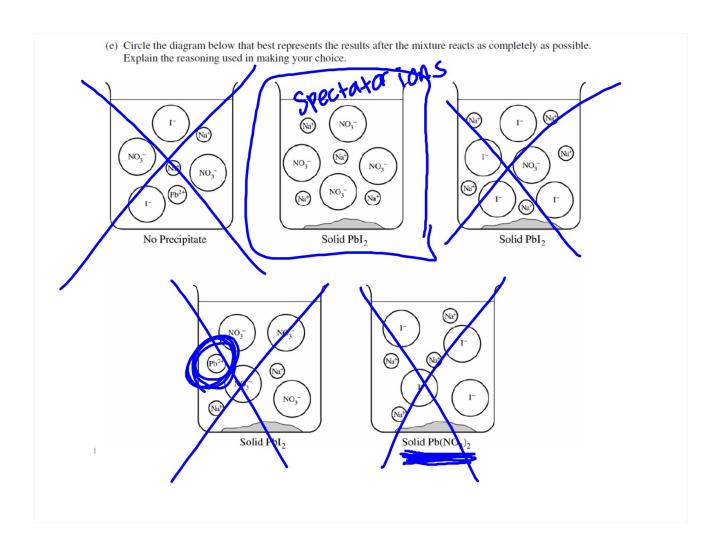
= 9.06×10^{-4} mol **EQUITE**

There is 1.25×10^{-2} mol of NaI initially, thus Pb(NO₃)₂ is the limiting reactant.

One point is earned for the identification of Pb(NO₃)₂.

One point is earned for a justification in terms of the relative numbers of moles.

4.53 × 10⁻⁴ mol Pb(No₃)₂


$$= mol PbT_{2}$$
1.25×10⁻² mol NaT
$$= mol PbT_{2}$$
Compare
$$= mol PbT_{2}$$
(d) Calculate the molar concentration of NO₃-(aq) in the mixture after the reaction is complete.

$$[NO_3^-]_f = \frac{2 \times (4.53 \times 10^{-4} \text{ mol})}{0.125 \text{ L}} = 7.25 \times 10^{-3} M$$

One point is earned for the correct NO₃⁻/Pb²⁺ stoichiometry.

One point is earned for the correct molarity.

$$\frac{4.53 \times 10^{-4} \text{ mol Pb(No3)}_{2}}{|\text{Imol Pb(No3)}_{2}} = \frac{9.06 \times 10^{-4}}{|\text{mol No3}|} = \frac{9.06 \times 10^{-4}}{|\text{Imol Pb(No3)}_{2}} = \frac{9.06 \times 10^{-4}}{|\text{Imol No3}|} = \frac{9.06 \times 10^{-4}}{|\text{Imol No3}|} = \frac{125 \text{ L}}{|\text{Imol No3}|} = \frac{7.25 \times 10^{-3} \text{ M No3}|}{|\text{Imol No3}|} = \frac{125 \text{ L}}{|\text{Imol No3}|} = \frac{125 \text{ L}}{|\text{Imol$$

