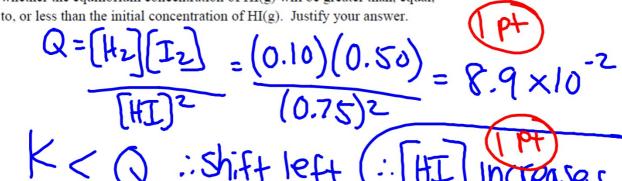


(a) Write the expression for the equilibrium constant, Kc, for the reaction. $\angle C = \boxed{H_2 / T_2}$

(d) On the graph above, make a sketch that shows how the concentration of H₂(g) changes as a function of time.


(e) Calculate the value of the following equilibrium constants at 700. K.

(i)
$$K_{c} = [H_{2}][I_{2}] = (0.1)(0.1) = [0.016][P^{\dagger}]$$

[$HI]^{2} = (0.8)^{2}$

(ii) $K_{p} = K_{c} (PT)^{\Delta n}$
 $K_{p} = V_{c} (PT)^{\Delta n}$
 $V_{p} = 0.016 (0.0821 \times 700 \text{ K})^{0} = (0.016)[P^{\dagger}]$

(f) At 1,000 K, the value of Kc for the reaction is 2.6 x 10⁻². In an experiment, 0.75 mole of HI(g), 0.10 mole of H₂(g), and 0.50 mole of I₂(g) are placed in a 1.0 L container and allowed to reach equilibrium at 1,000 K. Determine whether the equilibrium concentration of HI(g) will be greater than, equal,

