Stoichiometry Homework #1

1. In the formation of carbon dioxide from carbon monoxide and oxygen, how many moles of carbon monoxide are needed to react completely with 7.0 moles of oxygen gas?

want: mor Co
$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

2. How many moles of oxygen are required to burn 22.4 liters of ethane gas, C₂H₆, at standard conditions?

Want:
$$Mol O_Z$$
 $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$

3. Suppose that an excess of propane, C₃H₈, burns in 320 g of O₂. How many moles of H₂O will be formed?

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

4. Ammonia, NH₃, is commercially prepared by the Haber process. How many moles of ammonia can be formed from 44.8 liters of nitrogen gas and an excess of hydrogen at standard conditions?

Want: mol NH3

$$3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$$

91ven: 44.8 L N2

5. How many liters of hydrogen, H₂, are needed to react with 10. liters of nitrogen gas in the reaction forming ammonia?

Want: L Hz

$$3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$$

9 (ven: 10. L Nz.

6. How many grams of calcium must react with sulfuric acid, H₂SO₄, in order to produce 5.6 liters of hydrogen gas?

Want: 9 Ca $Ca + H_2SO_4 \rightarrow CaSO_4 + H_2$

$$Ca + H_2SO_4 \rightarrow CaSO_4 + H_2$$

given: 5.6 L Hz

ANSWERS:

- 1) 14 mol CO₂
- 2) 3.50 mol O₂
- 3) 8.0 mol H₂O

- 4) 4.00 mol NH₃
- 5) 30. L H₂
- 6) 10. g Ca

