Integrated Rate Laws – use when given concentration and time data

Graphing Calculator Tutorial Set up your calculator so that *time* is always in L1.

Use L2, L3 and L4 to display the y-variables. Remember the list for what is placed on the y-axis is alphabetical (concentration, natural log of concentration and reciprocal concentration).

= kt

L1 = time (*x*-variable throughout!)

second order

 $\begin{array}{lll} L2 = concentration & [A] & straight line infers zero order \\ L3 = ln concentration & ln [A] & straight line infers first order \\ L4 = reciprocal concentration & 1/[A] & straight line infers second order \\ \end{array}$

Use this system to set up the data given in the following exercise:

We are going to perform 3 linear regressions to determine the order of the reactant. They will be L1,L2; L1,L3; L1,L4. Next, we will determine which regression has the best r-value [linear regression correlation coefficient in big people language!] We will also paste the best regression equation Y= so that we can easily do other calculations commonly required on AP Chemistry Exam problems.

1. The decomposition of N_2O_5 in the gas phase was studied at constant temperature.

$$2 N_2 O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$

The following results were collected:

Zero	r=	-94
13+	r=	99
2nd	(=	. 94

[N ₂ O ₅]	Time (s)	
0.1000	0	
0.0707	50	
0.0500	100	
0.0250	200	
0.0125	300	
0.00625	400	

a) Determine the rate law and calculate the value of k.

rate=
$$k[N_205]$$
 $k = |Slope| = |-6.9 \times 10^{-3}| = |6.9 \times 10^{-3}|$

b) Calculate the concentration of
$$N_2O_5(g)$$
 at 250 s. Integrated rate law: $In[N_2O_5] = -6.9 \times 10^{-3} t - 2.3$ at $t = 250s$: $In[N_2O_5] = -6.9 \times 10^{-3}(250) - 2.3$ $In[N_2O_5] = -4.025$ $[N_2O_5] = e^{-4.025} = [0.018 \text{ M}]$

c) Calculate the concentration of $N_2O_5(g)$ at 600 s.

$$\ln [Nz0s] = -6.9 \times 10^{-3} + -2.3$$

$$\ln [Nz0s] = -6.9 \times 10^{-3} (600) -2.3$$

$$\ln [Nz0s] = -6.44$$

$$[Nz0s] = e^{-6.44} = 2 \times 10^{-3} \text{ M}$$
t time is the concentration of NzOs(g) equal to 0.00150 M?

d) At what time is the con

$$ln(0.00150) = -6.9 \times 10^{-3} + -2.3$$

 $t = 610 s$

2. For the reaction of (CH₃)₃CBr with OH⁻,

$$(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH + Br^-$$

The following data were obtained in the laboratory.

,			
zero: r =991	Time (s)	[(CH₃)₃CBr]	
1St: r = - 999)	0	0.100	
	30.0	0.074	
2nd: r= .992	60.0	0.055	
	90.0	0.041	

a) Determine the order of this reaction. Sketch an appropriate graph. Ist order v/respect to (CH₃)₃CBr

b) Calculate the value of the rate constant and include proper units.

$$k = 9.9 \times 10^{-3} \pm 5$$

c) At what time is the concentration of (CH₃)₃CBr equal to [0.086]?

$$ln(CH_3)_3CBr] = -9.9 \times 10^{-3} t - 2.3$$

 $ln(0.086) = -9.9 \times 10^{-3} t - 2.3$
 $t = 15 s$

d) What is the concentration of (CH₃)₃CBr after 2 minutes?

$$ln[(CH_3)_3(Br] = -9.9 \times 10^{-3}(120) - 2.3$$

 $ln[(CH_3)_3(Br] = -3.488$
 $[(CH_3)_3(Br] = e^{-3.488} = 0.031 M$