
Day 5.3 Warm-Up

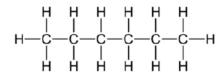
Beaker A contains 2.0 L of 3.0 M NaNO₃(aq). Beaker B contains 3.0 L of 2.0 Na₂SO₄(aq).

1. Draw the particles in solution in each beaker.

2. Calculate the concentration of Na⁺ ions in each beaker.

Beaker A: [Nat] = 1 x 3.0 M = 3.0 M | Beaker B: | Nat | = 2 x 2.0 M

3. The contents of Beakers A and B are poured into an empty Beaker C. Calculate the concentration of Na ions in Beaker C.


$$[Nat] = \frac{\text{mol Nat}}{\text{L Soln}} = \frac{18 \text{ mol Nat}}{5.0 \text{ L}} = \frac{3.6}{5.0 \text{ L}}$$

- 4. A 0.10 M aqueous solution of sodium sulfate, Na₂SO₄, is a better conductor of electricity than 0.10 M aqueous solution of sodium chloride, NaCl. Which of the following best explains this observation?
 - a. Na₂SO₄ is more soluble in water than NaCl.
 - b. Na₂SO₄ has a higher molar mass than NaCl.
 - c. To prepare a given volume of 0.10 M solution, the mass of Na₂SO₄ needed is more than twice the mass of NaCl needed.

More moles of ions are present in a given volume of 0.10 M Na₂SO₄ than in the same volume of 0.10 M NaCl.

- e. The degree of dissociation of Na₂SO₄ in solution is significantly greater than that NaCl.
- 5. The Lewis structure of a molecule of hexane, C₆H₁₄, and propanol, C₃H₇OH are below. Is hexane soluble in propanol? Explain your reasoning.

Hexane

Propanol

hexane is nonpolar and propanol is polar. . . they do not attract one another.