Determining Formulas

 Nickel reacts with sulfur to form a metal sulfide. If 2.986 g of nickel reacts with enough sulfur to form 5.433 g of the metal sulfide, what is the simplest formula of the metal sulfide? Determine the name of the metal sulfide.

Ni + S
$$\rightarrow$$
 Ni_xS_y
2.9869 2.4479 5.433 9 :: EF = Ni₂S₃
nickel (III) sulfide

mass of
$$S = 5.4339 - 2.9869 = 2.4479 S$$

 $\frac{2.9869 \text{ Ni} | \text{Imol Ni}}{|58.699 \text{ Ni}} = 0.050877 / 0.050877 = | \frac{\text{Imol Ni}}{\text{2 mol Ni}}$
 $\frac{2.4479 \text{ S} | \text{Imol S}}{|32.079 \text{ S}} = 0.07630 / 0.050877 = |.5 mol S}{\text{3 mol S}}$

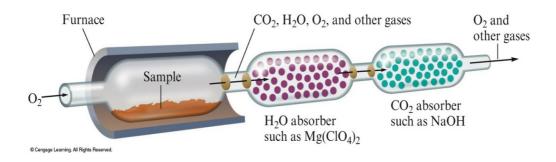
2. A 0.507 g sample of a compound containing only carbon, hydrogen, and oxygen is burned in oxygen gas to produce 0.698 g of CO_2 and 0.571 g of H_2O . The compound has a molar mass of 64 g/mol. Determine the correct empirical formula for this compound. What is the molecular formula of this compound?

$$C_x H_y O_z + O_z \rightarrow CO_z + H_z O_z = 0.507g 0.571g$$

$$\frac{\text{Mass of C}}{\text{Total mass of CO}_2} = \frac{\text{MM C}}{\text{MM CO}_2}$$

$$\frac{\text{Mass H}}{0.571 \, \text{gHzo}} = \frac{2.02 \, \text{g H}}{18.02 \, \text{g Hz}} \, 0$$

mass H = 0.0639 g H in Cx Hy Oz

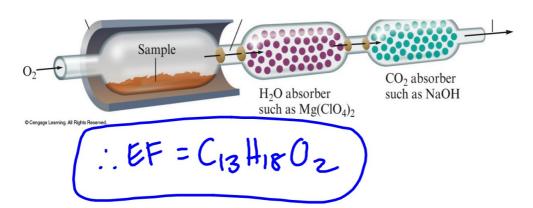

$$\frac{0.252190|1mol0}{1690} = 0.01576/ = 1 mol 0$$

$$\frac{MM_{MF}}{MM_{EE}} = \frac{64 \ g/mol}{32.04 \ g/mol} = 2$$

3. Oxygen reacts with carbon to form a molecular cpd. If 58.16 g of oxygen reacts with enough carbon to form 80.00 g of the cpd, what is the empirical formula of this compound?

$$\frac{58.16902 | 100102 | 20010}{32902 | 100102} = 3.635 / 1.81848 = 2001$$

4. A popular pain reliever is made up of carbon, hydrogen, and oxygen. When a 5.000 g sample of this pain reliever is burned in oxygen 13.86 g of CO₂ and 3.926 g of H₂O are obtained. The compound has a molar mass of 206 g/mol. What is the simplest formula (empirical formula) of this pain reliever? What is the molecular formula of the pain reliever?



4. A popular pain reliever is made up of carbon, hydrogen, and oxygen. When a 5.000 g sample of this pain reliever is burned in oxygen 13.86 g of CO₂ and 3.926 g of H₂O are obtained. The compound has a molar mass of 206 g/mol. What is the simplest formula (empirical formula) of this pain reliever? What is the molecular formula of the pain

reliever?
$$C_x H_y O_z + O_z \rightarrow CO_z + H_z O_z \rightarrow CO_z + H_z O_z + O_z \rightarrow CO_z + H_z O_z + O_z \rightarrow CO_z + H_z O_z \rightarrow CO_z + H_z$$

$$\frac{\text{Mass of H}}{3.9269 \text{ Hz0}} = \frac{2.0169 \text{ H}}{18.029 \text{ Hz0}} = \frac{2.0169 \text{ H}}{0.43929 \text{ Hz0}}$$

Mass of 0 in
$$CxHyO_2 = 5.000g - 3.7823g - 0.4392g$$

= 0.7785g0 in $CxHyO_2$

