- 1. Given the reaction: $2NOBr(g) \leftarrow \rightarrow 2NO(g) + Br_2(g)$
 - a. Write the formula of the equilibrium constant expression (Kc) for the reaction above.

$$K_c = [Br_2][No]^2$$

$$[NOBr]^2$$

b. Analysis shows that when the given system reaches equilibrium at 500K, the concentration of NOBr gas is 0.515M, NO gas is 0.350M, and Br_2 gas is 1.00M. Calculate the value of Kc at 500K.

c. If a 2.0L flask contains 0.34 moles of NOBr, 1.25 moles of NO, and 0.95 moles of Br_2 at 500K. Is the mixture at equilibrium? Show work to justify your answer.

d. Will the reaction shift forward, reverse, or not at all to establish equilibrium?

SHIFT REVERSE

2. Given the reaction : $SO_2(g) + NO_2(g) \leftarrow \rightarrow NO(g) + SO_3(g)$

At 700K, the reaction has a Kc = 3.6. Initially 4.00 moles of SO_2 gas and 4.00 moles of NO_2 gas are placed into a 2.0L flask and allowed to react.

a. Calculate equilibrium concentrations for all four gases.

$$[SO_2] = [NO_2] = .70 \text{ M}$$

 $[SO_3] = [NO] = 1.3 \text{ M}$

- b. Once equilibrium is established at 700K, predict what kind of shift will occur for each of the following disturbances.
 - i. Adding SO2 gas FORWARD (RIGht) Shift
 - ii. Removing NO gas FORWARD (RIGHT) Shift
 - iii. Increasing volume NO SHIFT