		lonic	Covalent/N	/lolecular
1.	Types of Elements	metal + Nonmetal	Nonmetal + N	onmeta!
2.	Naming Rules	-NO Prefixes -nonmetal ends in "-ide" -transition metal (roman numeral)	- use prefixes (mono-, di-, tri-, etc.) - 2nd element ends in "-ide" - Mono can be used only w/the 2nd element when applicable	
3.	Chemical Formula Rules	1. assign charge to each 101 2. sum of charges must equal Zero a. If sum = 0, then subscripts = 1 b. If sum ≠ 0, then criss-cross & reduce to get subscripts 3. place polyatomic lons in (parentheses)	1. Prefixes = subscri	ipts
4.	Properties	- electrolytes in solution (ions are "free") - high melting/boiling pts.	- nonelectrolytes - do not conduct electricity -low melting/boiling pts.	
5.	What are the Electrons Doing?	transfer of e-from metal to nonmetal	unequal sharing of e-	Nonpolar Bond equal sharing of e-
6.	Electroneg ativity Difference	greater than 1.7	Polar Bond 0.31 - 1.7	Nonpolar Bond 0 - 0.3

	Ionic	Covalent/Molecular
7. Show Bonding Using Electron Dot Diagrams	$\frac{\text{Mg} \cdot \dot{c}!}{\Rightarrow \dot{c}!} \Rightarrow \text{[Mg]}^{2+} [\dot{c}!]_{2} => \text{MgCl}_{2}$: ci—ci: single bond : o—o: => : o= o: Double bond
	$=> \left[Ca \right]_{3}^{2+} \left[:N: \right]_{2}^{3-} => Ca_{3}N_{2}$ $:Ca \cdot \longrightarrow N$	<u>vi-N</u> => N≡N Triple bond
8. Structure/ Shapes	crystalline solid	Linear Trigonal Planar Tetrahedral Bent Trigonal Ryramidal
9. Types of attractions between particles	,	(Hint: Intermolecular Forces)
10. Strength of attractions between particles	Strongest 1. 2. Highest boiling & melting points	3. 4. Weakest Lowest boiling & melting points