AP Chemistry Unit 4 Review Gases and Equilibrium

- 1. A gaseous mixture contains 4.29 g of methane, 1.25 g of ethane, and 5.24 g of propane. What pressure is exerted by the mixture inside a 50.0L cylinder at $75.0^{\circ}C$? Which gas contributes the greatest pressure and why?
- 2. To prepare a sample of hydrogen gas a student reacts zinc with hydrochloric acid. The overall net reaction is $Zn(s) 2H^{+}(aq) \rightarrow Zn^{+2}(aq) + H_2(g)$ The hydrogen is collected over water at 26.0°C and the total pressure is 766.00 mmHg (vapor pressure of $H_2O = 25.21$ mmHg).
 - a. What is the partial pressure of the hydrogen?
 - b. How many grams of hydrogen are there in a 3.00 L sample of wet gas?
- 3. $4 \text{ KO}_2 \text{ (s)} + 2 \text{ CO}_2 \text{ (g)} \rightarrow 2 \text{ K}_2 \text{CO}_3 \text{ (s)} + 3 \text{ O}_2 \text{ (g)}$
 - a) If you combine 10.0 g of KO_2 with the CO_2 in a 2.00L tank, in which the gas pressure is 1.12 atm at 20.0 °C, which reactant is consumed completely?
 - b) If the O_2 gas is captured from the reaction, what is its pressure in a 5.00 L flask at $27.0^{\circ}C$?
- 4. What is the rate at which He effuses compared to the rate at which CH4 does?
- 5. What is the density of Ne gas if it is in a flask at 25.0 ° C and 2.00atm?
- 6. A mixture of SO_2 , O_2 , and SO_3 at 1000K contains the gases at the following concentrations: $[SO_2] = 5.0*10^{-3}M$, $[O_2] = 1.9*10^{-3}M$, $[SO_3] = 6.9*10^{-3}M$. Which way will the reaction $2 SO_2$ (g) $+ O_2$ (g) $\longleftrightarrow 2 SO_3$ (g) Kc = 279 at 1000K shift to reach equilibrium? What is the value of the Kp at this Temperature?
- 7. $CO_2(g) + H_2(g) \leftrightarrow CO(g) + H_2O(g)$ Laboratory measurements at 986 °C show that there is 0.110mol each of CO and H₂O and 0.0870mol each of H₂ and CO₂ at equilibrium in a 1.0L container.
 - a. Calculate the Kc at this temperature.
 - b. Calculate the total pressure in the container at equilibrium.
 - c. If 0.100mol of H_2 and 0.100mol of CO_2 are added to the equilibrium mixture calculate the equilibrium concentrations for all gases after equilibrium is reestablished according to Lechatlier's Principle.

- 8. At a very high temperature, water vapor is 10.0% dissociated into H_2 and O_2 (that is 10% of the original water has been transformed into products and 90% remains. $H_2O(g) \leftrightarrow H_2(g) + \frac{1}{2} O_2(g)$
 - a. Assuming a H₂O (g) concentration of 2.0M before dissociation, calculate the Kc.
 - b. Calculate the Kc for $4H_2(g) + 2 O_2(g) \leftrightarrow 4H_2O(g)$
- 9. 2 NO (g) + O_2 (g) \longleftrightarrow 2 NO₂ (g) + heat Predict the shift with these changes:
 - a. adding more O_2 b. removing NO c. increase T d. decreasing volume
- 10. Calculate Kc for the reaction Fe(s) + H_2O (g) \leftrightarrow FeO (s) + H_2 (g) given the following information:

$$CO_2(q) + H_2(q) \leftrightarrow CO(q) + H_2O(q)$$

Kc = 0.625

2 Fe (s) + 2
$$CO_2$$
 (q) \leftrightarrow 2 FeO (s) +2 CO (q)

Kc = 2.25

11. The Kc value for the decomposition of solid NH₄HS is 1.8 * 10^{-4} at 25.0 ° C.

$$NH_4HS$$
 (s) \longleftrightarrow NH_3 (g) + H_2S (g)

- a. When 1.0 mol of the solid is placed in a 1.0L flask it decomposes according to the equation above. What are the equilibrium concentrations of the two gases.
- b. What is the total pressure at equilibrium?
- c. What is the percent of NH4HS decomposed when equilibrium is reached?
- d. What is the percent of NH4HS that remains?
- 12. What kind of conditions will allow a real gas to behave more like an ideal gas?