POD Unit 4 Test Review

1. What is the expression for Kc of the following reaction?

$$\begin{aligned} &H_2(g)+I_2(g)\leftrightarrow 2HI(g) & & & \\ & \text{a. } Kc = \underbrace{[I_2][H_2]}_{[HI]} & & \text{c. } Kc = \underbrace{[HI]}_{[H_2]+[I_2]} \\ & \text{b. } Kc = \underbrace{[2HI]}_{[H_2][I_2]} & & & \end{aligned}$$

- $[H_2][I_2]$
- 2. Under which of the following conditions does the equilibrium constant change for the reaction in Question 1?
 - a. Changing the size of the container
 - b. Introducing more I2 into the container
 - c. Changing the temperature
 - d. Changing the concentration of HI
 - e. None of the above, it is always constant
- 3. For the reaction $3A \leftrightarrow 2B$, Kc = 3.0. Determine Kc for
 - $9A \leftrightarrow 6B$ (3.0)a. 3.0 c. 9.0 b. 6.0 (d.)27.0
- 4. Which of the following pure gases has the greatest density
 - at 1.0 atm and 273K? STP d. CO₂ PV= m RT a. He d= m = b. CO c. N₂

5. The following two-step process has equilibrium constants

Step
$$2(A + B \leftrightarrow C + D)$$
 K_1
Step $2: B + E \leftrightarrow A + 2C$ K_2
Overall: $3A + B \leftrightarrow 2D + E$ K_3
a. $K_3 = K_1K_2$
b. $K_3 = (K_1)^2 + K_2$
c. $K_3 = (K_1)^2 / K_2$
d. $(K_3 = (K_1)^2 / K_2)$
e. $(K_3 = (K_1)^2 / K_2)$
e. $(K_3 = (K_1)^2 / K_2)$
f. $(K_1)^2 / (K_2)$

- 6. All of the following are properties of gases according to the kinetic theory EXCEPT
 - a. Gases consist of mostly empty space.
 - (b) Attractive forces cause gas molecules to collide.
 - Gas pressure is caused by collisions of molecules with the container walls.
 - d Collisions between gas molecules are elastic.
 - & Gas molecules are in constant motion.
- 7. Attractive forces between gas molecules are most significant at

- b. Low pressures and high temperatures
- c. High pressures and high temperatures
- d.) High pressures and low temperatures

- 8. Under which conditions does a real gas behave the most like an ideal gas? NO Attractions
 - a. 100 atm and 500K
 - b. 100 atm and 10K
 - © 0.001 atm and 500K
 - d. 0.001 and 10K
 - e. 0.001 and 273K

$$2NO_2(g) \, \leftrightarrow \, 2NO(g) \, + \, O_2(g)$$

- 9. Initially, a sealed vessel contained only NO with a partial pressure of 5 atm and O₂ with a partial pressure of 3 atm. The reaction above was allowed to come to equilibrium at a temperature of 600.K. At equilibrium, the partial pressure due to NO₂ was found to be 4 atm. What is the value of the equilibrium constant (Kp,) for the reaction?
 - a. 1/2

b. 1/3

- c. 1/4
- - Ammonia is produced commercially by the Haber process in which nitrogen and hydrogen react by the reaction:

$$N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + heat$$

Once the system is at equilibrium, which of the following changes will NOT result in a shift to the product side?

- a. Removal of ammonia = \sqrt{P} = \longrightarrow
- b. Addition of nitrogen = $\uparrow R = \rightarrow$ c. Decreasing the size of the container = $\downarrow_{V=|ess|}$
- d. Removal of hydrogen = \sqrt{R} = $\langle R \rangle$ e. Decreasing the temperature = \sqrt{R} = $\langle R \rangle$
- At a given temperature, molecules of different gases
 - (a) Have the same average kinetic energy
 - b. Have the same average velocity
 - c. Have the same diameter
 - d. Have the same density
 - e. Have identical masses
- $A + B \leftrightarrow C$ is an all gaseous system where Kc = 1.25. Before equilibrium was established, Q was determined to be 0.501. Which of the following is true?
- a. The reaction will favor reactants until equilibrium is established.
 - b. The reaction is at equilibrium.
- c. The reaction will favor products until equilibrium is established.
 - d. The reaction was temporarily at equilibrium.
 - e. Equilibrium will never be established.