Homework check!!!

Please staple papers in the following order and turn-in:

- 1) Ch. 7.1-7.3 notes
- 2) Ch. 7.11-7.12 notes
- 3) Ch. 7 exercises #39, 41, 43, 45, 83, 85 & 91
- 4) Ch. 7 exercises #97, 103, 105, 107, 109, 113, 115 & 125
- 5) Ch. 8 exercises #41, 45, 47, 49 & 53
- 6) Ch. 8.1-8.5 notes
- 7) Ch. 8.6-8.13 notes
- 8) Ch. 8 exercises #27, 29, 31, 33, 35 & 37

After the quiz, answer these quesitons on a sheet of paper:

- 1. Why do atoms bond?
- 2. Is energy absorbed or released when a chemical bond is broken? Explain your reasoning.
- 3. Draw a Lewis structure for each molecule: F₂, O₂, and N₂.

A bond forms between two atoms if the energy of the two atoms together is lower than when the atoms are separate

Bond energy - energy needed to break a bond; indicator of bond strength

Bond length - distance between two atoms where potential energy is minimal

Draw the Lewis structures for molecules of F_2 , O_2 , and N_2 .

Bond order, bond strength and bond length

Bond Type	Bond order	Bond Strenga	Bond length
Single Ze-shared	1	weakest	(1) e (1) longest
double 4e-shared	2		
triple Ge-shared	3	Strongest	(+) (+) Shortest less (+) (2 nuclei)
			repulsion

Bond energy data

F - F single bond: 154 kJ/mol

O = O double bond: 495 kJ/mol

N ≡ N triple bond: 941 kJ/mol

© Cengage Learning. All Rights Reserved.

Dipole moment - exists when a molecule has a positive end and a negative end (dipolar - two poles!)

- there is an unequal distribution of charge throughout the molecule
- results in a polar molecule

Polar molecule orientation in the presence of an electric field

Which molecules contain polar bonds? a, b, c, d Which molecules have a dipole moment? a, d Which molecules are polar?a,d

